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Abstract
Constrained orthogonal polynomials have been recently introduced in the study
of the Hohenberg–Kohn functional to provide basis functions satisfying particle
number conservation for an expansion of the particle density. More generally,
we define block orthogonal (BO) polynomials which are orthogonal, with
respect to a first Euclidean inner product, to a given i-dimensional subspace
E i of polynomials associated with the constraints. In addition, they are
mutually orthogonal with respect to a second Euclidean inner product. We
recast the determination of these polynomials into a general problem of finding
particular orthogonal bases in an Euclidean vector space endowed with distinct
inner products. An explicit two step Gram–Schmidt orthogonalization (G-SO)
process to determine these bases is given. By definition, the standard block
orthogonal (SBO) polynomials are associated with a choice of Ei equal to the
subspace of polynomials of degree less than i. We investigate their properties,
emphasizing similarities to and differences from the standard orthogonal
polynomials. Applications to classical orthogonal polynomials will be given
in forthcoming papers.

PACS numbers: 02.10.Ud, 02.30.Gp, 02.30.Mv, 21.60.−n, 31.15.Ew,
71.15.Mb

1. Introduction

Recently, B Giraud et al [1–3] have considered new sets of constrained orthogonal
polynomials. Basically, these real polynomials Pn(x), n = 1, 2, . . . of exact degree n (i.e. the
coefficient of xn is nonzero), satisfy the constraint of vanishing average1 with a non-negative

1 A constraint of ‘vanishing momentum’,
∫ b

a
dx w(x)xPn(x) = 0, is also considered in [1] section 3. See

footnote 44.
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weight function w(x) on a real interval [a, b],∫ b

a

dx w(x)Pn(x) = 0 n = 1, 2, . . . . (1.1)

In addition, they are orthogonal on the same interval with a distinct non-negative weight
function w2(x),∫ b

a

dx w2(x)Pm(x)Pn(x) ∝ δm,n m, n = 1, 2, . . . . (1.2)

The constant polynomial P0 is excluded since it does not fit the constraint. As a result,
these polynomials do not form a complete set, but span a subspace which can be well-suited
to specific applications. Thus, in various problems of mathematical physics, one considers
an unknown function f (x) which has to satisfy a similar constraint,

∫ b

a
dx w(x)f (x) = 0.

One way to take into account this constraint readily, is to expand f (x) in terms of the
basis polynomials Pn(x), n = 1, 2, . . . , as f (x) = ∑nc

n=1 fnPn(x), with nc a possible cut-
off. The choice of the weight functions is dictated by the problem investigated and physical
considerations, giving, possibly, a physical meaning both to the polynomials and to the possible
truncation of the functional space.

This method has been applied to the Hohenberg–Kohn variational principle [4] for the
ground state energy, originally established for an interacting electron gas in a local spin-
independent external potential v(r) leading to a non-degenerate ground state. The variable
function is the particle density n(r). The Hamiltonian reads H = T + V + U where T is the
kinetic energy, V corresponds to the local one-particle external potential v(r) and U is the
two-particle interaction (e.g., the Coulomb interaction). With number of particles N, and their
mutual interaction U specified, let V be a set of local one-particle potentials v(r) such that,
for each v(r), there exists a non-degenerate N-particle ground state |�〉 with energy E, that
is solution of the Schrödinger equation H|�〉 = E|�〉. From |�〉, one calculates the ground
state particle density n(r); see, e.g., equation (1.11). By definition, the number of particles is
a functional of n(r) such that

N [n] :=
∫

dr n(r) = N. (1.3)

Thereby, one defines the mappings v(r) �→ |�〉 �→ n(r). Let the set N of particle density
functions be defined as the image of V in the resulting mapping v(r) �→ n(r). Since a real
additive constant in v(r) has no effect on the ground state |�〉 and thus on n(r), potentials in
V differing by a real constant are considered equivalent. Let {v(r)} denote the equivalence
class. Then, the Hohenberg–Kohn theorem states that

(i) for all v(r) in V and all n(r) in N , there are one-to-one correspondences {v(r)} ↔ |�〉 ↔
n(r);

(ii) according to (i), let |�〉 be the N-particle ground state corresponding to any n(r) in N ,
then,

∀ n(r) ∈ N , n(r) �→ |�〉 F [n] := 〈�|T + U |�〉 (1.4)

is a universal functional, i.e. it does not depend on the external potential v(r) and is valid
for any number of particles N = N [n]. Now, for any v0(r) in V , the energy functional,

Ev0 [n] :=
∫

dr v0(r)n(r) + F [n] (1.5)
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assumes its minimum value on N for the exact ground state density n0(r) corresponding
to v0(r) according to (i).2 Then, Ev0 [n0] is equal to the corresponding N-particle ground
state energy E0 = minn∈N Ev0 [n].

Let us note that the implementation of this variational principle raises several fundamental
problems about (i) the possible extension of N to wider spaces of trial particle density; (ii) the
existence of a functional derivative to formulate the variational principle as δEv0 [n]/δn(r) = 0
[5]3.

Based on the work of Hohenberg and Kohn and several extensions [5]4, the density
functional theory has become a standard approach to investigate the properties of quantum
interacting many-particle systems in terms of the particle density n(r). This method has been
frequently used in several branches of chemistry and physics, e.g., in atomic, molecular and
nuclear theoretical physics. Along the Thomas–Fermi approach and the work of Kohn and
Sham [6] (replacing direct variations with respect to the particle density by an auxiliary orbital
picture), several functionals have been successfully used [5, 7]. Then, a constructive study of
the ground state is provided by standard perturbation theories (e.g., particle–hole excitations,
configuration mixing), around a mean field first-order approximation. The success of these
methods is based on the existence of suitable truncations to relevant subspaces.

In view of their use in some problems of nuclear physics, B Giraud et al aim to make a
similar approach in the space of particle density functions instead of the space of wavefunctions.
In other words, can the functional space of n(r) be truncated to a subset of meaningful ‘density
modes’? [1–3]. An ultimate goal would be a constructive approach to the Hohenberg–Kohn
functional. As a first step, the one-to-one correspondence between the particle density and the
external potential (up to within an additive constant) is investigated through the related values
of δn(r) and δv(r) around the true solution n0(r) for a given v0(r). Then, the question is: can
the functional spaces for δn(r) and for δv(r) be defined by ‘suitable’ basis functions, such that
the truncation of theses functional spaces to trial subspaces of few basis functions (or ‘modes’)
be relevant? In heuristic approach, forgetting the questions brought up previously about the
functional spaces, we focus on the following basic constraints: (i) n(r) has to be non-negative
and the particle number conservation (1.3) yields∫

dr δn(r) = 0; (1.6)

(ii) the one-to-one mapping is between {v(r)} and n(r), therefore δv(r) must not be a nonzero
constant,

δv(r) 	= const. (1.7)

A standard way to take into account the particle number conservation with the variational
formulation is to introduce a Lagrange multiplier µ such that δ(Ev0 [n]−µ

∫
dr n(r))/δn(r) =

0. Once again, this requires an extension of the functional space to particle density normalized
to a not-necessarily-integer value as in equation (1.3)5. The method sketched in our first

2 The proof relies on the Rayleigh–Ritz minimum principle for the energy functional E[�] := 〈�|H |�〉, in which
the wavefunction � is the variable function.
3 See, e.g., [5] sections 2.1 and 2.3 and the references therein, especially the works of Lieb and Levy. The particle
density n(r) ∈ N considered in the Hohenberg–Kohn theorem is said to be a pure state v-representable since it is the
density of a pure ground state |�〉 for a specific local external potential v(r) ∈ V . Now, for any given non-negative
n(r), normalized according to equation (1.3), does there exist a local external potential v(r) so that v(r) �→ n(r)?
The answer can be negative, even when the formalism is extended to non-pure N-particle states described by density
operators.
4 Degenerate ground state, finite temperature ensembles, etc; see, e.g., [5] section 3 and the references listed in this
review book.
5 See, e.g., [5] section 2.4 and [7] section 1.4.5, the problem of derivative discontinuities.
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paragraph presents an alternative overcoming these difficulties by considering trial variations
δn(r) which inherently satisfy the constraint (1.6). This is done as follows in a simple toy
model. As a usual first approximation in the nuclear shell model, a system of N independent
fermions in a one-dimensional harmonic oscillator potential v0(x) := 1

2x2 is considered in
[1–3]6, neglecting the two-body interactions. Then, the single-particle orbital wavefunctions
are defined by [8]7,

h := 1

2

(
− d2

dx2
+ x2

)
hψj (x) = εjψj (x) (1.8)

ψj(x) = (2nn!)−
1
2 π− 1

4 e− 1
2 x2

Hj(x) εj = 1

2
+ j j = 0, 1, . . . (1.9)

where Hj(x) is the Hermite polynomial. The N-particle ground state wavefunction
�0(x1, . . . , xN) is the properly normalized N × N Slater determinant built from the N lowest
energy single-particle eigenfunctions,

�0(x1, . . . , xN) = (N !)−
1
2 det[ψj(xk)] j=0,...,N−1

k=1,...,N

. (1.10)

The particle density, satisfying the normalization (1.3), reads

n0(x) := N

∫ ∞

−∞
dx2 · · ·

∫ ∞

−∞
dxN |�0(x, x2, . . . , xN)|2 =

N−1∑
j=0

ψj(x)2. (1.11)

Now, it follows from the first-order perturbation theory [8]8 that the response to a variation
δv(x) is for each single-particle wavefunction,

δψj (x) =
∞∑

J=N

ψJ (x)
〈ψJ |δv|ψj 〉

εj − εJ

〈ψJ |δv|ψj 〉 =
∫ ∞

−∞
dx ψJ (x)δv(x)ψj (x) (1.12)

where j = 0, . . . , N − 1 and J = N, . . . ,∞ are the hole and particle indices, respectively.
As a result, from equation (1.11), the variation of the particle density is9

δn(x) = 2
N−1∑
j=0

∞∑
J=N

ψj (x)ψJ (x)
〈ψJ |δv|ψj 〉

εj − εJ

(1.13)

thereby, providing the functional mapping δv(x) �→ δn(x), linear in first-order perturbation
theory. As usual, for practical study, this functional correspondence can be transformed into
a discrete (possibly infinite) linear problem by expanding both δn(x) = ∑∞

j=0 δnjϕj (x) and
δv(x) = ∑∞

k=0 δvkφk(x) on suitable bases, {ϕn(x), n = 0, 1, . . .} and {φn(x), n = 0, 1, . . .},
respectively. Now, since ψj(x)ψJ (x) ∝ exp(−x2) times a polynomial, δρ(x) can be expanded
readily on functions ϕn(x) := exp(−x2)Pn(x), with {Pn(x), n = 0, 1, . . .} any basis of real
polynomials. It is convenient to choose these polynomials of degree n and such that the
functions ϕn(x), n = 0, 1, . . . be orthogonal,∫ ∞

−∞
dx ϕm(x)ϕn(x) =

∫ ∞

−∞
dx e−2x2

Pm(x)Pn(x) ∝ δm,n. (1.14)

6 See [1] section 4, [2] section 4 and [3] section 2.
7 See, e.g., [8] appendix B (B.65) and (B.70).
8 See, e.g., [8] chapter XVI, section 2 (XVI.16).
9 The positivity of the density ρ0 + δρ is guaranteed at first order, since δρ follows from a first-order calculation of
the perturbed N-particle wavefunction �0 + δ�.
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This amounts to choose the polynomials Pn(x), n = 0, 1, . . . to be orthogonal with respect to
the weight function w2(x) := exp(−2x2). In addition, the particle number conservation (1.6)
will be satisfied trivially if each basis function ϕn(x) fulfils the constraint,∫ ∞

−∞
dx ϕn(x) =

∫ ∞

−∞
dx e−x2

Pn(x) ∝
∫ ∞

−∞
dx e−x2

P0Pn(x) = 0 (1.15)

i.e., if the polynomial Pn(x) is orthogonal to the constant polynomial P0 with the weight
function w(x) := exp(−x2). As already noted, this excludes the value n = 0. Thus, for
this toy model within the framework of perturbation theory and particle–hole excitations,
the functions ϕn(x) = w(x)Pn(x), with polynomials Pn(x), n = 1, 2, . . . satisfying
equations (1.1) and (1.2), assuming such polynomials exist, provide a functional space for
δn(x) taking into account the particle number conservation, essential for the Hohenberg–
Kohn variational principle. Now, what about the choice of the basis functions φn(x) for the
expansion of δv(x)? Although the constraints (1.6) and (1.7) are different, it is convenient to
choose the same basis, i.e. φn(x) := ϕn(x), n = 1, 2, . . . (otherwise, connection coefficients
between the two bases would be required in the calculation). Nevertheless, it should be
noted that the constraint (1.6),

∫∞
−∞ dx δv(x) = 0, implies that δv(x) satisfies the constraint

(1.7), but this not a necessary condition10, and therefore, this corresponds to a particular
restriction of the functional space for δv(x). Then, it is argued in [1–3] that these basis
functions are good candidates to define relevant particle density modes. The same approach
can be generalized for any one-particle potential v0(r), not only in a one-dimensional model.
Thus, in connection with the Laguerre polynomials, the following basis functions and weight
functions are considered in [2]11,

ϕn(x) := e−xPn(x) w(x) := e−xxd−1 w2(x) := e−2xxd−1. (1.16)

The functions ϕn(x), n = 1, 2, . . . have to satisfy the orthogonality relations (1.14) and (1.15)
with now x ∈ [0,∞) as, e.g., the radial variable in a d-dimensional space.

The purpose of this paper is to make a systematic study of this kind of polynomials
defined by equations (1.1) and (1.2). The problem can be generalized as follows. For
given nonzero and non-negative weight functions w(x) and w2(x) on a given interval, and
for given i linearly independent polynomials e1(x), . . . , ei(x) (possibly associated with i
‘constraints’12), spanning a subspace E1 of a space E of polynomials: (i) does there exist a
subspace E2 orthogonal to E1 with respect to the weight function w(x), together with E1 and E2

complementary in E? (ii) is it possible to define, and compute, within E2 an orthogonal basis
with respect to the other weight function w2(x)? Thereby, one defines what we call block
orthogonal (BO) polynomials, instead of constrained orthogonal polynomials, to underlined
the fact that the linear constraints are defined by an inner product. Although the problem was
motivated by polynomial considerations, it is worthwhile to point out what can be generalized
and ascribed to Euclidean vector space and to polynomial algebra, respectively.

This paper is organized as follows. The general problem in linear algebra is considered
in section 2. For the sake of clarity, elementary results for Euclidean spaces are recalled in
section 2.1 (see, e.g., [9–11]). Two BO subspaces and bases are defined and constructed in

10 B Giraud et al argue in [1] section 1, [2] section 1 and [3] section 2, that ‘the basis must be orthogonal to a flat
potential’ (i.e. constant). This is not true, e.g., δv(x) = ϕ0(x) ∝ w(x) does not fit the constraint (1.6), but satisfies
the constraint (1.7). A basis excluding a constant function could be {xn, n = 1, 2, . . .}.
11 For example, in atomic and molecular physics, one may think about the Coulomb interaction v0(r) ∝ 1/x, where x
is the radial variable in a 3-dimensional space. The single-particle orbital wavefunction includes an exponential term
linear in x; see, e.g., [8] chapter XI, section 6. Then, it would be clumsy to consider a basis function ϕn(x) with an
exponential term quadratic in x, as for the harmonic oscillator.
12 For equation (1.1), i := 1 and e1(x) := P0 = const.
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section 2.2. The well-defined method is based on a two step Gram–Schmidt orthogonalization
(G-SO) process. The possible extension to more than two subspaces is discussed in
section 2.3. These formal algebraic considerations are applied to polynomial vector spaces in
section 3. After generalities about Euclidean vector spaces of polynomials in section 3.1 (see,
e.g., [12–14]), BO polynomials for two subspaces are constructed in section 3.2. Then, we
focus, for a given non-negative integer i, on the real BO polynomials Pi;n(x), n = i, i + 1, . . .

of exact degree n, orthogonal to the polynomials of degree less than i with the weight function
w(x), and mutually orthogonal with respect to the weight function w2(x)13,∫ b

a

dx w(x)xmPi;n(x) = 0 m = 0, . . . , i − 1 n = i, i + 1, . . . (1.17)

∫ b

a

dx w2(x)Pi;m(x)Pi;n(x) ∝ δm,n m, n = i, i + 1, . . . (1.18)

generalizing equations (1.1) and (1.2) for i � 1. We call these polynomials standard block
orthogonal (SBO) polynomials. Their general properties are investigated in section 3.3,
comparing them with the properties of the standard orthogonal polynomials. We give our
conclusions in section 4. For completeness, and to underline the similarities to and the
differences from the study of BO polynomials, definition and properties of standard orthogonal
polynomials are recalled in appendix A. Examples of BO polynomials for three subspaces are
given in appendix B.

Throughout the remaining of this paper, the following conventions and notations are used:

– i, j, k, 	,m, n and N denote non-negative integers;
– a null sum is interpreted as zero while a null product or a null determinant is interpreted

as unity;
– matrices are denoted in boldface, e.g., A := (Aj,k)j,k=···;
– for any function f : x �→ f (x) (especially a polynomial), f stands for f (x);
– monic polynomials, i.e. with the coefficient of the highest power equal to one, and also

any related quantities are denoted by hatted letters, e.g., P̂n and ĥn;
– in the differentiation and/or recurrence formulae, the polynomials with negative degree

are set equal to zero, e.g., P−2 = P−1 := 0;
– standard orthogonal polynomials are denoted by Qn, n = 0, 1, . . . , where Qn is of exact

degree n;
– classical orthogonal polynomials (e.g., the Hermite and Laguerre polynomials) are defined

according to [14–16]14;
– BO polynomials are denoted with a capital P, e.g., Pi;n for SBO polynomials.

2. Block orthogonal subspaces and bases

2.1. Basic definitions and properties of complementary and orthogonal subspaces

Let E be an N-dimensional vector space over the real field R. A symmetric and positive-
definite (thus non-degenerate) bilinear form on E , defines an Euclidean inner product or scalar

13 In other words, the i linear constraints are associated with the i linearly independent polynomials ej−1(x) :=
xj , j = 0, . . . , i − 1, defining the subspace Pi := E1 of polynomials of degree less than i.
14 See [14] chapter X, [15] chapter 22 or [16] section 8.9.
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product ( , ) such that15

∀u, v ∈ E (u, v) = (v, u) ∈ R (u, u) � 0 and (u, u) = 0 ⇔ u = 0. (2.1)

Any N1-dimensional subspace E1 of E , not {0} or E itself, has an infinity of complementary
subspaces, all of dimension N2 = codimEE1 := N − N1, i.e. the codimension16 of E1 with
respect to E . Indeed, any basis {e1, . . . , eN1} of E1 can be completed with N2 vectors ε1, . . . , εN2

such that {e1, . . . , e1 , ε1, . . . , εN2} is a basis of E . Then, ε1, . . . , εN2 generate a complementary
subspace E2 of E1. For any arbitrary vectors u1, . . . , uN2 in E1, not all zero, the N2 vectors,
ε′
j := uj + εj , j = 1, . . . , N2 generate another complementary subspace E ′

2 of E1. Now, it is
known that there is a unique subspace E2 = E⊥

1 such that E1 and E⊥
1 are complementary and

orthogonal with respect to the Euclidean inner product ( , ),

E = E1 ⊕ E⊥
1 and (E1, E⊥

1 ) = 0 ⇒ ∀u ∈ E1, ∀v ∈ E⊥
1 (u, v) = 0. (2.2)

Then, E⊥
1 , is called the orthogonal (with respect to ( , )), complement of E1.17

A constructive method to define E⊥
1 is to make use of the Gram–Schmidt orthogonalization

(G-SO).18 This is a canonical inductive procedure of getting an orthogonal basis {E1, . . . , EN }
of E , starting with an arbitrary basis {e1, . . . , eN }. For bj,j , j = 1, . . . , n some arbitrary real
nonzero finite factors, one defines recurrently19,

E1 := e1b
−1
1,1

E2 := (−E1b1,2 + e2)b
−1
2,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
En := (−E1b1,n − · · · − En−1bn−1,n + en)b

−1
n,n n = 1, . . . , N

(2.3)

such that

(Ej , Ek) = hjδj,k j, k = 1, . . . , n En =
n∑

m=1

emam,n

en =
n∑

m=1

Embm,n an,n = b−1
n,n.

(2.4)

Once a basis is chosen, the inner product is characterized by the metric tensor components,

gj,k := (ej , ek) i, j = 1, . . . , N. (2.5)

It is known20 that En can be written formally in terms of a determinant as

En = b−1
n,n

Zn−1
det

[
(gj,k)

(ek)

]
j=1,...,n−1
k=1,...,n

n = 1, . . . , N (2.6)

15 The bilinear form is said to be (i) non-degenerate if for every u, (u, v) = 0 implies v = 0; (ii) definite if (u, u) = 0
implies u = 0; (iii) positive if (u, u) is positive for every nonzero u. See, e.g., [9] sections 59–61, [10] chapter XIV,
section 1 or [11] 3.1-1.
16 See, e.g., [17] A, II, section 7, no 3, definition 2, p 99.
17 The uniqueness of E⊥

1 follows from the non-degenerate character of the inner product. See, e.g., [9] section 62 and
the projection theorem in section 66, [10] section 1 proposition 2 or [11] 3.3-3 and 3.3-4. In [8] chapter VII, section 4,
complementary and orthogonal subspaces are said to be ‘complementary’.
18 See, e.g., [9] section 65, [10] chapter XIV, section 7, [11] 3.4-6 or [14] 10.1 (7).
19 If the inner product were not definite, an arbitrary basis vector as e1 might be such that (e1, e1) vanishes. But the
non-degenerate character of the inner product implies that any basis vector, say E1, of an orthogonal basis has to be
such that (E1, E1) 	= 0, otherwise this nonzero vector would be orthogonal to all vectors in contradiction with the
hypothesis.
20 This is usually considered within the framework of orthogonal functions and especially polynomials. See, e.g.,
[12] (2.2.6) or [14] 10.1 (9), (10), 10.3 (3) and (4), with kn := b−1

n,n,Gn := Zn and cj+k := gj,k .
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where Zn is the nonzero Gram determinant21

Z0 := 1 Zn := det[gj,k]j,k=1,...,n n = 1, . . . , N. (2.7)

Actually, all the relevant quantities can be expressed in terms of determinants with gj,k as
entries, except possibly for the last row. One has for n = 1, . . . , N ,

hn = b−1
n,n(en, En) = b−2

n,n

Zn−1
det

[
(gj,k)

(gn,k)

]
j=1,...,n−1
k=1,...,n

= b−2
n,n

Zn

Zn−1
(2.8)

am,n = b−1
n,n

Zn−1
det

[
(gj,k)

(δm,k)

]
j=1,...,n−1
k=1,...,n

= (−1)m+n
b−1

n,n

Zn−1
det[gj,k] j=1,...,n−1

k=1,...,n
k 	=m

. (2.9)

It follows from equation (2.3) that for m = 1, . . . , n − 1, the orthogonality relation
(Em,En) = 0 yields hmbm,n = (Em, en). Then, using equations (2.6) and (2.8) and the
symmetry property, gk,n = gn,k , the connection coefficient bm,n reads for 1 � m � n < N ,

bm,n = b−1
m,m

hmZm−1

det

[
(gj,k)

(ek)

]
j=1,...,m−1
k=1,...,m

, en

 = bm,m

Zm

det

[
(gj,k)

(gn,k)

]
j=1,...,m−1
k=1,...,m

. (2.10)

This formula is not given in the standard textbooks already quoted.
There is an infinity of orthogonal bases of the subspace generated by the n linearly

independent vectors e1, . . . , en.22 The G-SO process shows that for any set of nonzero finite
factors {bj,j 	= 0, j = 1, . . . , n}, there is a unique sequence of orthogonal basis vectors
{E1, . . . , En} satisfying equation (2.4), i.e. such that for m = 1, . . . , n, Em is a linear
combination of e1, . . . , em with the nonzero component b−1

m,m on em.
Now, assuming that {e1, . . . , eN1} is a basis of the subspace E1 and applying G-SO up to

n = N1, then {E1, . . . , EN1} is an orthogonal basis of E1. Carrying on this procedure up to
n = N , the N2 orthogonal basis vectors EN1+1, . . . , EN determine the unique subspace E⊥

1
satisfying equation (2.2).

In the commonly used Dirac notation23, each vector v in E is denoted as the ket |v〉. Each
element of the dual space E∗ is denoted as a bra 〈u|. Then, the orthogonality and the closure
relations for the basis {E1, . . . , EN } read

〈Ej |Ek〉 = hjδj,k j, k = 1, . . . , N

N∑
n=1

|En〉h−1
n 〈En| = IE (2.11)

where IE denotes the identity operator on E . The projector �E1 onto E1 along E⊥
1 , and

the projector �E⊥
1

onto E⊥
1 along E1 are said to be orthogonal projectors or perpendicular

projectors with respect to ( , ). One has

�E1 =
N1∑
n=1

|En〉h−1
n 〈En| �E⊥

1
=

N∑
n=N1+1

|En〉h−1
n 〈En| �E1 + �E⊥

1
= IE . (2.12)

Although often convenient, this compact notation must be handled with care in the
continuation, since several inner products are going to be considered simultaneously; see

21 The inner product being positive definite, the real symmetric matrix (gj,k)j,k=1,...,N is positive definite. All its
principal minors are positive, see, e.g. [14] section 6.2.4. Hence Zn 	= 0 for n = 0, . . . , N .
22 The sequence {E′

1, . . . , E
′
n} is also an orthogonal basis with the same normalization (2.4) if and only if it is

obtained from {E1, . . . , En} by an isometric linear mapping, E′
j := ∑n

k=1 Ekh
−1/2
k Ok,j h

1/2
j , j = 1, . . . , n where,

(Ok,j )k,j=1,...,n is any n × n orthogonal matrix in the orthogonal group O(n).
23 See, e.g., [8] chapter VII.
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equation (2.20). Therefore, the Dirac notation will be used henceforth only when dealing with
orthogonal projectors.

Remark. Following the idea of ‘constraint’ considered by B Giraud et al for equation (1.1),
or more generally (1.17), E2 = E⊥

1 can be alternately defined as the subset of vectors v in E
satisfying the i = N1 constraints, (ej , v) = 0, j = 1, . . . , N1, where ej , j = 1, . . . , N1 are
linearly independent vectors (a basis of E1 in our first formulation). Since these constraints are
linear in v, E2 is a subspace. More precisely here, they are associated with the linear forms,
〈ej |, j = 1, . . . , N1, and read 〈ej |v〉 = 0. It follows that v belongs to the kernels of each of
these forms, each kernel being of codimension one24. Now, the non-degenerate character of
the inner product implies that these N1 forms are linearly independent. Consequently, E2 is a
subspace of codimension N1.

In a more general problem, independently of the existence of an inner product, E2

could be defined as the intersection of the kernels of N1 linearly independent linear
forms fj , j = 1, . . . , N1 in E∗. For any given basis {ej , j = 1, . . . , N} of E , these
forms are characterized by the coefficients fj,k := fj (ek), j, k = 1, . . . , N . Then, with
v = ∑N

j=1 vj ej , the subspace E2 is determined by the N1 linear equations with N unknowns,∑N
k=1 fj,kvk = 0, j = 1, . . . , N1. The rank of this system being N1, the solution v,

defining E2 uniquely, depends linearly on N − N1 parameters, e.g. vN1+1, . . . , vN assuming
det[fj,k]j,k=1,...,N1 	= 0.25

Nevertheless, the physical applications quoted in section 1 involve constraints which are
particular linear forms, i.e. bras associated with an Euclidean inner product ( , ). Only this case
is considered in this paper, studying below the interplay of the initial inner product ( , ) with
new inner products, ( , )1 on E1, and mainly ( , )2 on E2.

2.2. Two block orthogonal subspaces and bases

2.2.1. Definitions and properties. From above, for any subspace E1 of an Euclidean space
E , with the inner product ( , ), the complementary and orthogonal subspace E⊥

1 is uniquely
determined. Now, each of these subspaces can be endowed with a new Euclidean structure
by any new Euclidean inner product ( , )1 on E1 and ( , )2 on E⊥

1 (these inner products can be
possibly defined on the whole space E). Then, E1 and E⊥

1 are said to be block orthogonal (BO)
subspaces.

Every vector in E having a unique decomposition on the complementary subspaces E1

and E⊥
1 , these inner products induce a new Euclidean structure on E with the inner product

( , )0 defined by

∀u = u1 + u2 ∈ E u1 ∈ E1 u2 ∈ E⊥
1

∀v = v1 + v2 ∈ E v1 ∈ E1 v2 ∈ E⊥
1

(u, v)0 := (u1, v1)1 + (u2, v2)2 (2.13)

or, equivalently, E1 and E⊥
1 being orthogonal with respect to ( , ),

(u, v)0 :=


(u, v)1 ∀u, v ∈ E1

(u, v) = 0 ∀u ∈ E1 ∀v ∈ E⊥
1

(u, v)2 ∀u, v ∈ E⊥
1 .

(2.14)

Now, an orthogonal basis {φ1, . . . , φN } of E with respect to ( , )0, i.e. such that

(φj , φk)0 = Hjδj,k j, k = 1, . . . , N (2.15)

24 Due to the non-degenerate character of the inner product, the kernel of 〈ej | is the (N − 1)-dimensional hyperplane
orthogonal to ej with respect to ( , ) in the N-dimensional space E .
25 When the linear forms are defined by fj := 〈ej |, j = 1, . . . , N1, as in the case we consider, then fj,k = gj,k :=
(ej , ek) and thus ZN1 	= 0; see footnote 21.
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or, from equation (2.14),
(φj , φk)1 = Hjδj,k j, k = 1, . . . , N1

(φj , φN1+k) = 0 j = 1, . . . , N1, k = 1, . . . , N − N1

(φN1+j , φN1+k)2 = HN1+j δj,k j, k = 1, . . . , N − N1

(2.16)

can be obtained using G-SO again, separately in E1 and E⊥
1 . Then, {φ1, . . . , φN1} and

{φN1+1, . . . , φN } are said to be BO bases.
It should be noted that

– the inner product ( , )0 defined on E by equation (2.13) depends on E1 and on the three
inner products ( , ), ( , )1 and ( , )2;

– an orthogonal basis of E1 with respect to ( , )1, {φ1, . . . , φN1}, depends only on this inner
product. It can be determined in the standard way, using G-SO to orthogonalize any
basis {e1, . . . , eN1} of E1 (possibly an orthogonal basis with respect to ( , )). Thereby, with
arbitrary real nonzero finite factors bn,n, n = 1, . . . , N1, one has

{e1, . . . , eN1} G-SO−−−−−−→ {φ1, . . . , φN1}
g1;j,k := (ej , ek)1 (φj , φk)1 = Hjδj,k j, k = 1, . . . , N1

(2.17)

applying equations (2.4)–(2.10) with φn,Hn and g1;j,k instead of En, hn and gj,k ,
respectively;

– on the other hand, an orthogonal basis of E⊥
1 with respect to ( , )2, {φN1+1, . . . , φN },

depends on E1 (regardless to the inner product ( , )1), and on both inner products ( , ) and
( , )2. It can be obtained applying G-SO twice:
(i) once to determine E⊥

1 itself by the orthogonal basis with respect to
( , ), {EN1+1, . . . , EN }. With arbitrary real nonzero finite factors bN1+n,N1+n, n =
1, . . . , N − N1, one has readily from equations (2.4)–(2.10),

{e1, . . . , eN } G-SO−−−−−−→ {E1, . . . , EN1 , EN1+1, . . . , EN }
gj,k := (ej , ek) (Ej , Ek) = hjδj,k j, k = 1, . . . , N;

(2.18)

(ii) once again to orthogonalize {EN1+1, . . . , EN } with respect to ( , )2. Thereby, with
arbitrary real nonzero finite factors βN1+n,N1+n, n = 1, . . . , N − N1, one has

{EN1+1, . . . , EN } G-SO−−−−−−→ {φN1+1, . . . , φN }
g2;j,k := (EN1+j , EN1+k)2 (φN1+j , φN1+k)2 = HN1+j δj,k j, k = 1, . . . , N − N1

(2.19)
applying equations (2.4)–(2.10) with φN1+n,HN1+n and g2;j,k instead of En, hn and
gj,k , respectively.

There is an infinity of BO bases. They are related by isometric linear mappings within
each one of the subspaces E1 and E⊥

1 ; see footnote 22.

2.2.2. Projection operators. To use the Dirac notation, one has to take care of the dependence
of the one-to-one mapping between the vector space and its dual space upon the inner product
considered. Thus, to each ket |u〉, there corresponds now four distinct bras, denoted by
〈u|, 0〈u|,1 〈u| and 2〈u|, and defined by

∀|v〉 ∈ E 〈u|v〉 := (u, v) j 〈u|v〉 := (u, v)j j = 0, 1, 2. (2.20)

The projectors orthogonal with respect to ( , ),�E1 onto E1 and �E⊥
1

onto E⊥
1 , can be readily

expressed only in terms of bases of E which can be split into a basis of E1 and a basis of E⊥
1 .
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This is the case for the basis {E1, . . . , EN } orthogonal with respect to ( , ). Then, the projectors
are given by equation (2.12) in terms of the bras 〈 |. This is also the case with the BO basis
{φ1, . . . , φN }. Then, with the bras 0〈 | associated with ( , )0, the orthogonality relation (2.15)
and the closure relation read

0〈φj |φk〉 = Hjδj,k j, k = 1, . . . , N

N∑
j=1

|φj 〉H−1
j 0〈φj | = IE . (2.21)

The projectors �E1 and �E⊥
1

are given by

�E1 =
N1∑
j=1

|φj 〉H−1
j 0〈φj | �E⊥

1
=

N∑
j=N1+1

|φj 〉H−1
j 0〈φj |. (2.22)

Now, one may ask to express these projectors in terms of the inner product ( , )2 and one
of its orthogonal basis. Assuming the inner product ( , )2 is defined on the whole space E ,
let us choose the basis {E2;1, . . . , E2;N } one gets applying the G-SO procedure on the basis
{E1, . . . , EN }, i.e. such that

{E1, . . . , EN } G-SO−−−−−−→ {E2;1, . . . , E2;N } (E2;j , E2;k)2 = h2;j δj,k j, k = 1, . . . , N

E2;n =
n∑

m=1

Ema2;m,n En =
n∑

m=1

E2;mb2;m,n n = 1, . . . , N
(2.23)

where a2;n,n = b−1
2;n,n, n = 1, . . . , N are some arbitrary real nonzero finite factors. Then, the

orthogonality and the closure relations in E read

2〈E2;j |E2;k〉 = h2;j δj,k j, k = 1, . . . , N

N∑
n=1

|E2;n〉h−1
2;n 2〈E2;n| = IE . (2.24)

From the closure relations (2.11) and (2.24), one has

|E2;n〉 =
n∑

m=0

|Em〉h−1
m 〈Em|E2;n〉 h−1

m 〈Em|E2;n〉 = a2;m,n (2.25)

|En〉 =
n∑

m=0

|E2;m〉h−1
2;m 2〈E2;m|En〉 h−1

2;m 2〈E2;m|En〉 = b2;m,n (2.26)

where, using equation (2.23), the upper bound of the sums over m is set equal to n instead
of N. In other words, with the choice of basis {E2;1, . . . , E2;N }, 〈Em|E2;n〉 and 2〈E2;m|En〉
vanish for m > n. Finally, using equations (2.12) and (2.24)–(2.26), the projectors �E1 and
�E⊥

1
can be expressed in terms of the bras 2〈 | as

�E1 =
n∑

j=1

N∑
k=n

|E2;j 〉
(

N1∑
n=1

b2;j,na2;n,k

)
h−1

2;k 2〈E2;k| (2.27)

�E⊥
1

=
N∑

n=1

h−1
2;n|E2;n〉 2〈E2;n| − �E1 . (2.28)
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2.3. Extension to more than two subspaces

2.3.1. First generalization. One may ask whether it is possible to consider three, or more,
BO subspaces. From above, for any given N1-dimensional subspace E1 of the Euclidean
N1,2-dimensional space E1,2 with the inner product ( , )1,2, there is a unique complementary
and orthogonal (N1,2 − N1)-dimensional subspace E2 such that, according to equation (2.2),
E1,2 = E1 ⊕ E2 and (E1, E2)1,2 = 0. Now, let us assume E1,2 is a subspace of an Euclidean
N-dimensional space E with the inner product ( , ). Iterating the procedure above, there
is a unique complementary and orthogonal (N − N1,2)-dimensional subspace E3, such that
E = E1,2 ⊕ E3 and (E1,2, E3) = 0. Thereby, both E1 and E2 are orthogonal to E3 with respect
to the same inner product ( , ).

More generally, for any given subspace E1 ⊕ E2 of E (e.g., such that (E1, E2)1,2 = 0) and
two distinct Euclidean inner products ( , )1,3 and ( , )2,3 defined on E , does there exist a subset
E3 such that

E = E1 ⊕ E2 ⊕ E3 and

{
(E1, E3)1,3 = 0
(E2, E3)2,3 = 0?

(2.29)

From the linearity of the inner product, if it exists, E3 is a subspace. Let us try to determine
E3 by constructing one of its basis. Let {e1, . . . , eN } be any basis of E such that

{
e1, . . . , eN1

}
and

{
eN1+1, . . . , eN1+N2

}
are bases of E1 and E2, respectively. Now, setting

εn :=
N1+N2∑
m=1

emcm,n + eN1+N2+n n = 1, . . . , N − (N1 + N2) (2.30)

these vectors are linearly independent. For n given, the N1 + N2 coefficients cm,n,m =
1, . . . , N1 + N2 have to satisfy the N1 + N2 orthogonality conditions of εn with E1 and E2

according to equation (2.29),{
(ej , εn)1,3 = 0 j = 1, . . . , N1(
eN1+j , εn

)
2,3 = 0 j = 1, . . . , N2.

(2.31)

With the metric tensor components, gσ,3;j,k := (ej , ek)σ,3, j, k = 1, . . . , N for σ = 1, 2 and

G :=
 (g1,3;j,k) j=1,...,N1

k=1,...,N1+N2

(g2,3;N1+j,k) j=1,...,N2
k=1,...,N1+N2

 Vn :=
(

(g1,3;j,N1+N2+n)j=1,...,N1

(g2,3;N1+j,N1+N2+n)j=1,...,N2

)
(2.32)

the linear equations (2.31) read in matrix notation, G(cm,n)m=1,...,N1+N2 = −Vn. Now, det G
is not a Gram determinant, as it would be if ( , )1,3 = ( , )2,3. Therefore, G may be a singular
matrix, and the linear equations (2.31) have a solution if and only if the rank of G and the rank
of the so-called augmented matrix (GVn), obtained by adjoining to G the column Vn, are the
same, say r. Then, the solutions for εn depend linearly on N1 + N2 − r parameters. Since the
principal minors det[g1,3;j,k]j,k=1,...,N1 and det[g2,3;N1+j,N1+k]j,k=1,...,N2 are Gram determinants,
one has sup(N1, N2) � r � N1 + N2. Thereby, the problem of the existence of E3 satisfying
equation (2.29), may have a unique solution, no solution or an infinite number of solutions.
That these three cases do happen has still to be proven. In other words, it has to be checked
that the relations required between the two metric tensors are compatible with their symmetric
and positive-definite character. Examples with polynomials and N1 = N2 = 1 and N = 3
are given in appendix B. In the generic case, the rank of G is N1 + N2, i.e. det G 	= 0,
and E3 is defined uniquely by the basis vectors ε1, . . . , εN−N1−N2 . Thus, in this case, for given
E1 ⊂ E1,2 ⊂ E and the Euclidean inner products ( , )1,2, ( , )1,3 and ( , )2,3, there are unique
subspaces E2 and E3 satisfying equation (2.29) with E1,2 = E1 ⊕ E2. Now, endowing E1, E2

and E3 with new Euclidean inner products ( , )1,1, ( , )2,2 and ( , )3,3, respectively, these three
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subspaces are said to be BO. A new Euclidean structure on E is induced with the inner product
defined as in equation (2.14) by, (u, v)0 := (u, v)σ,σ if u, v ∈ Eσ , σ = 1, 2, 3 and 0 otherwise.
Orthogonal bases of Eσ with respect to ( , )σ,σ for σ = 1, 2, 3, respectively, are said to be BO
bases26.

2.3.2. Second generalization. Let E be an N-dimensional vector space endowed with two
distinct Euclidean inner products ( , ) and ( , )′. For a given N1-dimensional subspace E1, does
their exist a subset F of vectors orthogonal to E1 with respect to ( , ) and ( , )′ at the same time?
It follows from section 2.1 that F is the subspace E⊥

1

⋂
E⊥

1
′
, intersection of both orthogonal

complements of E1, E⊥
1 with respect to ( , ) and E⊥

1
′
with respect to ( , )′. Let

{
ε′

1, . . . , ε
′
N−N1

}
be any basis of E⊥

1
′
. There exist uniquely defined vectors uj ∈ E1 and εj ∈ E⊥

1 such that
ε′
j = uj + εj , j = 1, . . . , N − N1. Then,

{
ε1, . . . , εN−N1

}
is a basis of E⊥

1 and for any vector
v in F , one has

v =
N−N1∑
j=1

αjεj =
N−N1∑
j=1

α′
j ε

′
j ⇒

N−N1∑
j=1

(αj − α′
j )εj =

N−N1∑
j=1

α′
juj = 0. (2.33)

The last equation above vanishes since the left-hand side is a vector in E⊥
1 while the right-hand

side is in E1. This implies that the dimension of F is N − N1 − r , where r is the rank of
{u1, . . . , uN−N1}. (This rank is intrinsic, i.e. it only depends on E⊥

1 and E⊥
1

′
, independently

of the choices of bases for these subspaces.) These N − N1 u-vectors belonging to the
N1-dimensional subspace E1, one has r � inf(N1, N − N1). As a first example, if these
u-vectors are linearly independent, r = N − N1 (requiring N − N1 � N1) and the dimension
of F vanishes, i.e. F = {0}. As a second example, if E⊥

1 = E⊥
1

′
, although the two inner

products are distinct, all the u-vectors vanish, r = 0 and F = E⊥
1 .

Remark. Most of the properties considered in this section 2 can be extended to Hermitian
vector space over the complex field and also to infinite-dimensional Hilbert spaces, the typical
spaces used in quantum theory27.

3. Application to vector spaces of polynomials

3.1. Euclidean vector space of polynomials

Let µ be a non-constant and non-decreasing real function on the real domain D such that all
the moments are finite,

cn :=
∫
D

dµ(x)xn < ∞ n = 0, 1, . . . . (3.1)

If µ is absolutely continuous dµ(x) = w(x) dx where, w is a nonzero and non-negative
weight function. The associated inner product of real functions f and g in the class of square
integrable functions L2

µ(D) is denoted by

(f, g) :=
∫
D

dµ(x)f (x)g(x). (3.2)

This inner product is symmetric, (f, g) = (g, f ), and it follows from the hypotheses on µ that
it is positive definite, i.e. (f, f ) > 0 except for f = 0, where it vanishes. Now, for N a positive

26 This study can be extended, with similar conclusions, to p > 2 subspaces Eσ and inner products ( , )σ,p+1, not all

the same, defined on E for σ = 1, . . . , p. Then, the question is to determine the subspace Ep+1 such that E = ⊕p+1
σ=1Eσ

and (Eσ , Ep+1)σ,p+1 = 0, σ = 1, . . . , p.
27 See, e.g., [8] chapter V, section 2 and chapter VII, section 4, [11] chapter 3 or [19] chapter VI.
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integer, let PN be the N-dimensional vector space over the real fields of real polynomials of
degree at most N −1 (by definition, P0 := {0})28. Any inner product defined as above endows
PN with an Euclidean structure. Then, all the general results considered in section 2 can
be applied. Furthermore, new properties are available in connection with (i) the additional
characteristics of the vectors, i.e. the degree, possibly the parity or the monomial character of
polynomials and basically, a richer algebraic structure, the multiplication endowing the set of
polynomials with the structures of a ring and of an algebra over the real field29, and (ii) the
definition of the inner product in terms of an integral. The theory of orthogonal polynomials
has been extensively studied30. The G-SO of the monomial basis {x0, x1, . . . , xN−1} of PN

provides the unique standard orthogonal basis of polynomials {Q0, . . . ,QN−1} such that
Qn is a polynomial of degree n with a given arbitrary real nonzero factor kn as coefficient
of xn31,

(Qj ,Qk) = hjδj,k and Qj = kjx
j + O(xj−1). (3.3)

To avoid the one unit lag between the index of these basis vectors and the degree, from now
on, the indices indicating the degree will start at 0 instead of 1. This induces some trivial
changes in the general formulae (2.2)–(2.10) which are given in appendix A.

Classical orthogonal polynomials (i.e., Hermite, Laguerre and Jacobi polynomials)
correspond to particular measures {D, dµ}. These polynomials arise frequently and have
been studied in great detail32. Particular SBO polynomials associated with these polynomials
(as those considered in [1, 3] for the Hermite case, and in [2] for the Laguerre case) will be
studied in forthcoming papers.

3.2. Standard block orthogonal polynomials for two subspaces

Let us apply the general considerations of sections 2.1 and 2.2 to the following case: (i) E is
the vector space of polynomials PN with three Euclidean inner products ( , ), ( , )1 and ( , )2

defined as in equation (3.2) by the measures {D, dµ}, {D1, dµ1} and {D2, dµ2}, respectively;
(ii) E1 is any subspace of PN , e.g., defined by any sequence

{
e1, . . . , eN1

}
of N1 linearly

independent polynomials in PN . For E1 = P0 or PN , the problem is trivial. For 0 < N1 < N ,
the general procedure given in section 2.2 can be applied to get BO bases of E1 and E2 satisfying
the orthogonality relations (2.16). The first step is to determine the unique subspace E2 = E⊥

1
complementary and orthogonal to E1 with respect to the inner product ( , ). For that purpose,
the basis

{
e1, . . . , eN1

}
of E1 is completed to get a basis {e1, . . . , eN } of PN . The G-SO of

this basis provides a basis {E1, . . . , EN } of orthogonal polynomials with respect to the inner
product ( , ). Then, E⊥

1 is defined uniquely by the sub-basis
{
EN1+1, . . . , EN

}
. Finally, G-SO

of
{
e1, . . . , eN1

}
(or of {E1, . . . , EN1}) with respect to ( , )1 and of

{
EN1+1, . . . , EN

}
with

respect to ( , )2 provides BO bases of E1 and E⊥
1 , respectively. It should be noted that this

general procedure applies whatever the degree of the polynomials defining E1 is.
Henceforth, let us focus on the special case where, E1 = Pi , i.e. the subspace of

polynomials of degree less than i, for given 0 < i < N . 0ne basis of this subspace is

28 Let us recall the basic property: the Pj , j = 0, 1, . . . are nested, i.e. 0 � j � k,Pj ⊆ Pk .
29 See, e.g., [9] section 35 or [10] chapter V for a formal study of polynomials.
30 The standard textbook on this subject is [12]. See also, e.g., [13] and [14] chapter X.
31 There is an infinity of orthogonal polynomials; see footnote 22. As an example, G-SO of the monomial basis
taken in the reverse order, i.e. {e1 := xN−1, . . . , eN := x0}, generates the unique orthogonal basis of polynomials
{R1 := E1, . . . , RN := EN } such that Rj is a polynomial of degree at most N − 1 and in which the lowest degree
monomial is xN−j with a given arbitrary nonzero aN−j,j as coefficient: Rj = a1,j x

N−1+a2,j x
N−2+· · ·+aN−j,j x

N−j ,
thereby defining another kind of standard orthogonal polynomials.
32 See, e.g., [14] sections 10.6–10.13, [15] chapter 22 or [16] section 8.9.
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{x0, . . . , xi−1}. Then, following the procedure above, the unique subspace P⊥
i;N := E⊥

1 such
that (

Pi ,P⊥
i;N
) = 0 and PN = Pi ⊕ P⊥

i;N (3.4)

is defined uniquely by the sub-basis {Qi, . . . , QN−1} of standard orthogonal polynomials
with respect to the inner product ( , ). For given arbitrary real nonzero finite kn :=
b−1

n,n, n = 0, . . . , N − 1, these polynomials, satisfying equation (3.3), are defined uniquely by
equations (A.1)–(A.10).

The inner products ( , )1 and ( , )2 induce a new Euclidean structure on PN with the inner
product ( , )0 defined as in equations (2.13) and (2.14),

∀p = pi;1 + pi;2 ∈ PN pi;1 ∈ Pi , pi;2 ∈ P⊥
i;N

∀q = qi;1 + qi;2 ∈ PN qi;1 ∈ Pi , qi;2 ∈ P⊥
i;N

(p, q)0 := (pi;1, qi;1)1 + (pi;2, qi;2)2.

(3.5)

The BO bases {Pi,0, . . . , Pi;i−1} of Pi and {Pi,i , . . . , Pi;N−1} of P⊥
i;N form an orthogonal basis

of PN with respect to the inner product ( , )0 such that, as in equation (2.16),

(Pi;m, Pi;n)0 =


(Pi;m, Pi;n)1 = Hi;mδm,n m, n = 0, . . . , i − 1
(Pi;m, Pi;n) = 0 m = 0, . . . , i − 1 n = i, . . . , N − 1
(Pi;m, Pi;n)2 = Hi;mδm,n m, n = i, . . . , N − 1.

(3.6)

Requiring that Pi;n be a polynomial of exact degree n, the equations above determine uniquely
these polynomials up to an arbitrary nonzero factor in each polynomial:

– the Pi;n, n = 0, . . . , i − 1, which only depend on the inner product ( , )1, are the standard
orthogonal polynomials for the measure {D1, dµ1} as given in appendix A, with nothing
new. In what follows we will not be concerned with them;

– the Pi;n, n = i, . . . , N −1, which depend on i (regardless to the inner product ( , )1) and on
both inner products ( , ) and ( , )2, are the standard block orthogonal (SBO) polynomials.
They can be obtained using G-SO to orthogonalyze the basis {Qi, . . . ,QN−1} with respect
to the inner product ( , )2. Indeed, the procedure preserves the degree of the polynomials
and one has

Pi;n =
n∑

m=i

QmAi;m,n Qn =
n∑

m=i

Pi;mBi;m,n Ai;n,n = B−1
i;n,n. (3.7)

Hence, with P̂i;n a monic polynomial,

Pi;n := Ki;nP̂i;n P̂i;n := xn + R̂i;nxn−1 + Ŝi;nxn−2 + O(xn−3) (3.8)

and equations (3.7) and (A.3) yield

Ki;n = knAi;n,n = (bn,nBi;n,n)
−1 (3.9)

R̂i;n = r̂n +
kn−1

kn

Ai;n−1,n

Ai;n,n

(3.10)

Ŝi;n = ŝn +
kn−1

kn

Ai;n−1,n

Ai;n,n

r̂n−1 +
kn−2

kn

Ai;n−2,n

Ai;n,n

. (3.11)

Then, given arbitrary nonzero finite Bi;j,j (or equivalently Ki;j ) for j = i, . . . , N − 1, and
with

γj,k := (Qj ,Qk)2 j, k = i, . . . , N − 1 (3.12)
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it follows from equations (2.19) and (2.4)–(2.10), that for i � m � n � N − 1,

P̂i;n = k−1
n

1

Zi;n−1
det

[
(γj,k)

(Qk)

]
j=i,...,n−1
k=i,...,n

P̂i;i = k−1
i Qi = Q̂i (3.13)

Zi;n := det[γj,k]j,k=i,...,n Zi;i−1 := 1 (3.14)

Hi;n = K2
i;nĤ i;n Ĥi;n := k−2

n

Zi;n
Zi;n−1

(3.15)

Ai;m,n = Ki;nÂi;m,n Âi;m,n := k−1
n Zi;n−1 det

[
(γj,k)

(δm,k)

]
j=i,...,n−1
k=i,...,n

(3.16)

Bi;m,n = K−1
i;mB̂i;m,n B̂i;m,n := km

1

Zi;m
det

[
(γj,k)

(γn,k)

]
j=i,...,m−1
k=i,...,m

. (3.17)

For i = 0, the procedure above amounts to orthogonalize the basis {Q0, . . . ,QN−1} of
PN with respect to ( , )2. Then, P̂0;n is the unique standard monic orthogonal polynomial Q̂2;n
of exact degree n, defined for the measure {D2, dµ2}. From equation (A.6), one has

P̂0;n = k−1
n

det

[
(γj,k)

(Qk)

]
j=0,...,n−1

k=i,...,n

Z0;n−1
= Q̂2;n :=

det

[
(c2;j+k)

(xk)

]
j=0,...,n−1
k=0,...,n

det[c2;j+k]j,k=0,...,n−1
(3.18)

where

c2;n :=
∫
D2

dµ2(x)xn. (3.19)

Thus, for i = 0, the general results are still valid with P0 := {0} and P⊥
0;N := PN . For i = N ,

the problem is trivial with P⊥
N;N = {0}.

Finally, in the i, n-plane, the SBO polynomial P̂i;n is associated with the integer coordinate
point i, n such that 0 � i � n. These points are located in the sector between the two
boundary half straight lines: the diagonal i = n � 0, along which P̂n;n = Q̂n; and the y-axis
i = 0, n � 0, along which P̂0;n = Q̂2;n, where, Q̂n and Q̂2;n are the standard monic orthogonal
polynomials of exact degree n for the measures {D, dµ} and {D2, dµ2}, respectively. At the
origin, P̂0;0 = 1.

From equations (3.7), (A.3) and (A.4), an expansion of Pi;n in terms of the monomials
xm,m = 0, . . . , n, as well as the inverse expansion, can be written. As an example, inverting
the finite sums over m and 	, one has

Pi;n =
n∑

m=i

(
m∑

	=0

x	a	,m

)
Ai;m,n =

n∑
	=0

x	Ci;	,n Ci;	,n :=
n∑

m=sup(i,	)

a	,mAi;m,n. (3.20)

However, we have not been able to get a close form for these connection coefficients Ci;	,n,
even in the special cases associated with the classical polynomials considered in forthcoming
papers.

3.3. Properties of standard block orthogonal polynomials for two subspaces

3.3.1. Projection operators. Using the Dirac notation, the general formulae given
in sections 2.1 and 2.2.2 apply readily with only some slight modifications in the
notations. In the space PN , the orthogonal bases of the inner products ( , ), ( , )2 and
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( , )0 are {Q0, . . . ,QN−1}, {Q2;0, . . . ,Q2;N−1} and {Pi;0, . . . , Pi;N−1}, respectively. From
equation (3.18), Q2;n ∝ P0;n, therefore, {Q2;0, . . . ,Q2;N−1} can be replaced by the basis
{P0;0, . . . , P0;N−1}. Thus, the orthogonality and the closure relations for these orthogonal
bases read for 0 � i < N ,

〈Qj |Qk〉 = hjδj,k 2〈P0;j |P0;k〉 = H0;j δj,k 0〈Pi;j |Pi;k〉 = Hi;j δj,k j, k = 0, . . . , N − 1

(3.21)
N−1∑
j=0

|Qj 〉h−1
j 〈Qj | =

N−1∑
j=0

|P0;j 〉H−1
0;j 2〈P0;j | =

N−1∑
j=0

|Pi;j 〉H−1
i;j 0〈Pi;j | = IPN

. (3.22)

As chosen in section 2.2.2, the basis {P0;0, . . . , P0;N−1} is obtained from {Q0, . . . ,QN−1}
using the G-SO procedure with respect to ( , )2. (What is peculiar here, is that all the basis
vectors Qn, P0;n and Pi;n are polynomials of exact degree n.) Therefore, with equation (3.7),
one has using the closure relations within Pn+1,

|P0;n〉 = IPn+1 |P0;n〉 =
n∑

m=0

|Qm〉h−1
m 〈Qm|P0;n〉 h−1

m 〈Qm|P0;n〉 = A0;m,n (3.23)

|Qn〉 = IPn+1 |Qn〉 =
n∑

m=0

|P0;m〉H−1
0;m 2〈P0;m|Qn〉 H−1

0;m 2〈P0;m|Qn〉 = B0;m,n (3.24)

corresponding to equations (2.25) and (2.26), respectively. In other words, 〈Qm|P0;n〉 and
2〈P0;m|Qn〉 vanish for m > n, or else, the matrices which relate these different bases are
triangular. Following equation (2.27), the projectors, �Pi

onto Pi and �P⊥
i;N

onto P⊥
i;N ,

orthogonal with respect to ( , ), are

�Pi
=

i−1∑
n=0

|Qn〉h−1
n 〈Qn| =

i−1∑
n=0

|Pi;n〉H−1
i;n 0〈Pi;n| (3.25)

=
n∑

j=0

N−1∑
k=n

|P0;j 〉
(

i−1∑
n=0

B0;j,nA0;n,k

)
H−1

0;k 2〈P0;k| (3.26)

�P⊥
i;N

=
N−1∑
n=i

|Qn〉h−1
n 〈Qn| =

N−1∑
n=i

|Pi;n〉H−1
i;n 0〈Pi;n| (3.27)

= IPN
− �Pi

=
N−1∑
n=0

|P0;n〉H−1
0;n 2〈P0;n| − �Pi

. (3.28)

As an example, for i = 1 one has33

�P1 = |Q0〉h−1
0 〈Q0| = |P0;0〉B0;0,0

N−1∑
k=0

A0;0,kH
−1
0;k 2〈P0;k|. (3.29)

33 This kind of relations is given in [2] (9)–(11) in the special case i = 1. Unfortunately, these equations are wrong
since the different inner products involved have not been taken properly into account. This is especially the case when
writing PN = ∑N

n=1 |wn〉〈wn| which should correspond to our expression (3.25) in terms of 0〈 |, not easy to handle
as underlined below. Furthermore, 〈r|σN 〉 defined with (9) should be exp(−1/r) times a zero degree polynomial, i.e.
a constant corresponding to our |Q0〉 (in addition, 〈zn〉 for the Laguerre polynomials should be (−1)n2 instead of
2). Thus, |σN 〉 corresponds to some polynomial |RN 〉 of degree N. Nevertheless, it happens that in (10) the bra 〈σN |
do correspond to ∝ 〈Q0| and moreover, the normalization coefficient is such that 〈Q0|RN 〉 = 1, yielding (11). Yet,
although |RN 〉〈σN | is a projector, it is not an orthogonal projector.
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Let us emphasize again that all these equations have to be handled with care since different
inner products are involved. Moreover, when the actions of the bras 〈 | and 2〈 | are expressed
with a single integral, e.g. ∀ f, p ∈ PN 〈f |p〉 := ∫

D dµ(x) f (x)p(x), this is no longer true
for the bra 0〈f |. Actually, the only way to compute 0〈f |p〉 follows from the definition of ( , )0

by equation (3.5), i.e. it is to split both f and p into their components in Pi and P⊥
i;N . Then,

this inner product reads as a sum of two integrals.

3.3.2. Integral representations. The relations between the product of differences, a
Vandermonde determinant and a polynomial alternant of any polynomials pn = knx

n +
O(xn−1) are well known34. With yn := {y0, . . . , yn−1},�1(y1) := 1 and for n = 2, 3 . . . , one
has

�n(yn) :=
∏

0�j<k�n−1

(yk − yj ) = det[(yj )
k]j,k=0,...,n−1 = 1∏n−1

j=0 kj

det[pk(yj )]j,k=0,...,n−1.

(3.30)

(i) Integral representation of Zi;n. In the integral,

I :=
∫
D2

dµ2(yi) · · ·
∫
D2

dµ2(yn) det[Qk(yj )]
2
j,k=i,...,n (3.31)

the product of measures is symmetric and each determinant is anti-symmetric in the
variables yi, . . . , yn. Therefore, one of the two determinants can be replaced by one of
the (n + 1 − i)! terms of its expansion, say

∏n
j=i Qj (yj ), provided one multiplies the

result by (n + 1 − i)!. Thereby, integrating independently over the variables yi, . . . , yn

(yj occurs only in the row j ), and using equation (3.12), one gets

I = (n + 1 − i)! det[γj,k]j,k=i,...,n. (3.32)

With equation (3.14), this yields the integral representation of Zi;n for n = i, i + 1, . . . ,35

Zi;n = 1

(n + 1 − i)!

∫
D2

dµ2(yi) · · ·
∫
D2

dµ2(yn) det[Qk(yj )]
2
j,k=i,...,n. (3.33)

For i = 0, replacing Qk by yk , the same steps as above yield the known integral
representation36,

det[c2;j+k]j,k=0,...,n = 1

(n + 1)!

∫
D2

dµ2(y0) · · ·
∫
D2

dµ2(yn)�n+1(yn+1)
2 (3.34)

where c2;j is defined by equation (3.19). Therefore, using equations (3.3) and (3.30),
one recovers the relation between the determinants of the metric tensor matrices for the
measure {D2, dµ2} in the two bases {Qj, j = 0, . . . , n} and {xj , j = 0, . . . , n},

Z0;n = det[γj,k]j,k=0,...,n =
(

n∏
j=0

kj

)2

det[c2;j+k]j,k=0,...,n. (3.35)

(ii) Integral representation of P̂i;n. From equations (3.3) and (3.30), one has

�n+1(yn, x) = �n(yn)

n−1∏
j=0

(x − yj ) = 1∏n
j=0 kj

det

[
(Qk(yj ))

(Qk(x))

]
j=0,...,n−1
k=0,...,n

. (3.36)

34 See, e.g., [16] 14.311, [18] section 7.1 or [20] equation (C.3).
35 This result can also be obtained from the Gram equality. See, e.g., [18] sections 3.7 and 7.4.
36 See, e.g., [12] (2.2.7) and (2.2.11).
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Now, for j = 0, . . . , n − 1, multiplying the j th row of the determinant above by
Qj(yj ) and integrating over yj the elements of this row with the measure {D, dµ} for
j = 0, . . . , i − 1 and the measure {D2, dµ2} for j = i, . . . , n − 1, one finds with
equations (3.3) and (3.12),∫

D
dµ(y0) · · ·

∫
D

dµ(yi−1)

∫
D2

dµ2(yi) · · ·
∫
D2

dµ2(yn−1)�n+1(yn, x)

n−1∏
j=0

Qj(yj )

= 1∏n
j=0 kj

det


(hj δj,k)j,k=0,...,i−1 (0) j=0,...,i−1

k=i,...,n

(γj,k) j=i...,n−1
k=0,...,i−1

(γj,k) j=i...,n−1
k=i,...,n

(Qk(x))k=0,...,i−1 (Qk(x))k=i,...,n

 . (3.37)

The Laplace expansion37 of this determinant according to its i first rows, and
equation (3.13) yield the integral representation:

P̂i;n(x) =
∏n−1

j=0 kj

Zi;n−1
∏i−1

j=0 hj

∫
D

dµ(y0) · · ·
∫
D

dµ(yi−1)

×
∫
D2

dµ2(yi) · · ·
∫
D2

dµ2(yn−1)�n+1(yn, x)

n−1∏
j=0

Qj(yj ). (3.38)

For i = 0, this integral representation reads

P̂0;n(x) =
∏n−1

j=0 kj

Z0;n−1

∫
D2

dµ2(y0) · · ·
∫
D2

dµ2(yn−1)�n+1(yn, x)

n−1∏
j=0

Qj(yj ). (3.39)

Now, with the same trick as in (i) above, the measure being symmetric and �n+1(yn, x)

being anti-symmetric in y0, . . . , yn−1, one can replace
∏n−1

j=0 Qj(yj ) by the anti-symmetric
function det[Qk(yj )]j,k=0,...,n−1 provided one divides the result by n!. Then, from
equations (3.30), (3.35) and (3.36), one recovers the known integral representation for
standard monic orthogonal polynomials of degree n for the measure {D2, dµ2}38,

P̂0;n(x) = 1

n! det[c2;j+k]j,k=i,...,n−1

∫
D2

dµ2(y0) · · ·
∫
D2

dµ2(yn−1)�n(yn)
2

n−1∏
j=0

(x − yj ).

(3.40)

3.3.3. Domains and measures symmetric with respect to the origin. Let the domains D and
D2, and the measures dµ and dµ2 be symmetric with respect to the origin, e.g., D = [a, b]
with a = −b and dµ(x) = w(x) dx with an even weight function w(−x) = w(x), and
similar relations for the measure {D2, dµ2}. Then, as the standard orthogonal polynomials
Qn, n = 0, 1, . . . (see appendix A), the polynomials Pi;n, n = i, i + 1, . . . are even or odd
according as n is even or odd,

Pi;n(−x) = (−1)nPi;n(x). (3.41)

Indeed, Pi;n(−x), n = i, i + 1, . . . satisfies the same orthogonality relations (3.6) as Pi;n(x),
and since there are unique polynomials satisfying these orthogonality relation and the
normalization condition (3.8), comparing the coefficient of xn yields equation (3.41). Actually,

37 See, e.g., [18] section 2.5.1.
38 See, e.g., [12] (2.2.7) and (2.2.10), where the polynomials are normalized according to equation (A.11), or [14]
10.3 (3)–(5).
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the even and odd polynomials separate from each other and equations (3.13)–(3.15) take the
form for 0 � i � n39,

P̂2i−1;2n = P̂2i;2n = k−1
2n

1

Z
(e)
i;n−1

det

[
(γ2j,2k)

(Q2k)

]
j=i,...,n−1
k=i,...,n

(3.42)

Z
(e)
i;n := det[γ2j,2k]j,k=i,...,n Z

(e)
i;i−1 := 1 (3.43)

Ĥ 2i−1;2n = Ĥ 2i;2n = k−2
2n

Z
(e)
i;n

Z
(e)
i;n−1

(3.44)

P̂2i;2n+1 = P̂2i+1;2n+1 = k−1
2n+1

1

Z
(o)

i;n−1

det

[
(γ2j+1,2k+1)

(Q2k+1)

]
j=i,...,n−1
k=i,...,n

(3.45)

Z
(o)

i;n := det[γ2j+1,2k+1]j,k=i,...,n Z
(o)

i;i−1 := 1 (3.46)

Ĥ 2i;2n+1 = Ĥ 2i+1;2n+1 = k−2
2n+1

Z
(o)

i;n
Z

(o)

i;n−1

. (3.47)

As for the standard orthogonal polynomials (see equations (A.17)–(A.28)), these relations
can be obtained in two ways: (1) it can be checked, as for equation (2.6), that these monic
polynomials satisfy the orthogonality conditions (3.6) for ( , ) and ( , )2 which define them
uniquely; (2) taking advantage of the checkerboard structure of the matrix associated with
the metric tensor, since γj,k vanishes if j + k odd, the determinants which occur in the
general formulae (3.13)–(3.17) can be evaluated from the lemma given in appendix A (see
equations (A.13)–(A.15)). As an example, let us compute P̂2i;2n, one has

P̂2i;2n = k−1
2n

1

Z2i;2n−1
det

[
(γj,k)

(Qk)

]
j=2i,...,2n−1
k=2i,...,2n

= k−1
2n

1

Z2i;2n−1
det

[
(γ2j,2k)

(Q2k)

]
j=i,...,n−1
k=i,...,n

det[γ2j+1,2k+1]j,k=i,...,n−1 (3.48)

which, as expected, does not depend on the odd polynomials Q2j+1, j = i, . . . , n − 1, and
Z2i;2n−1 reads

Z2i;2n−1 = det[γj,k]j,k=2i,...,2n−1 = det[γ2j,2k]j,k=i,...,n−1 det[γ2j+1,2k+1]j,k=i,...,n−1. (3.49)

Thereby, one gets expressions (3.42) and (3.43) of P̂2i;2n and Z
(e)
i;n, respectively.

It follows from equations (3.42) and (3.45) that

if(−1)i+n = 1 then P̂i−1;n = P̂i;n 0 � i − 1 � n. (3.50)

In other words, in the i, n-plane, two neighbouring points having the same ordinate n are
associated with equal SBO polynomials if both coordinates i and n of the right-hand point
have the same parity. As a special case, the points immediately on the left of the boundary
i = n � 1 are also associated with known SBO polynomials, since from equation (3.13) one
has

P̂i−1;i = P̂i;i = Q̂i i � 1. (3.51)

Therefore, in addition to P̂0;0 = 1, one has P̂0;1 = P̂1;1 = x.

39 It is recalled that here, and in what follows, if i = 0, the expressions with the index 2i − 1 do not occur.
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Note that if i = 1, setting i = 0 in equation (3.45) yields P̂1;2n+1 for n = 0, 1, . . . ,

P̂1;2n+1 = Q̂2;2n+1 = P̂0;2n+1 (3.52)

as it should be from equations (3.18) and (3.50). Actually, the identity between P̂1;2n+1

and Q̂2;2n+1 follows readily from parity arguments. Indeed, the odd standard orthogonal
polynomials with respect to ( , )2, i.e. Q̂2;2n+1, n = 0, 1, . . . , are orthogonal with any even
polynomial with respect to any inner product defined with an even measure. Thus, they are
orthogonal to x0 with respect to ( , ) and orthogonal to P̂1;2n with respect to ( , )2.

3.3.4. Normalization. As for the standard orthogonal polynomials (see appendix A) three
particular choices of normalization can be considered with interest:

(i) Ki;n = 1, then Pi;n = P̂i;n is a monic polynomial;
(ii) Hi;n = 1, then the polynomials Pi;n, n = 0, 1, . . . are orthonormal. In addition, choosing

Ki;n/kn > 0, from equation (3.15), one has

Ki;n
kn

=
(

Zi;n−1

Zi;n

)1/2

Pi;n = (Zi;n−1Zi;n)−1/2 det

[
(γj,k)

(Qk)

]
j=i,...,n−1
k=i,...,n

Pi;i = Z
−1/2
i,i Qi;

(3.53)

(iii) Ki;n = knZi;n−1, then Z-factors in denominators remain only in equation (3.17), in
particular,

Hi;n = Zi;n−1Zi;n Pi;n = det

[
(γj,k)

(Qk)

]
j=i,...,n−1
k=i,...,n

. (3.54)

3.3.5. Linear recurrence formula with respect to the degree n. Standard orthogonal
polynomials fulfil the three term linear recurrence formula for n = 0, 1, . . .40,

Qn+1 = (Anx + Bn)Qn − CnQn−1 An = kn+1

kn

Bn = An(̂rn+1 − r̂n) Cn = An

An−1

hn

hn−1
.

(3.55)

Following the same steps, with B̂i;n := R̂i;n+1 − R̂i;n, the polynomial P̂i;n+1 − (x + B̂i;n)P̂i;n
is of degree at most n − 1. Therefore, it reads

∑n−1
j=0 αi;j P̂i;j where, from the orthogonality

condition (3.6),

αi;j Ĥ i;j = (P̂i;j , P̂i;n+1 − (x + B̂i;n)P̂i;n)0 = −(P̂i;j , xP̂i;n)0. (3.56)

But now, for i � n, (P̂i;j , xP̂i;n)0 is not equal to (xP̂i;j , P̂i;n)0, since the inner product ( , )0

is not defined by a single integral. From equation (3.5), to evaluate (P̂i;j , xP̂i;n)0, one has
to split xP̂i;n into its components in Pi and in P⊥

i;N , e.g., by expanding xP̂i;n on the basis
polynomials P̂i;j , j = 0, . . . , n + 1. This can be done as follows using equations (3.7) and
(3.55), for i � n,

xP̂i;n =
n∑

m=i

xQmÂi;m,n =
n∑

m=i

A−1
m (Qm+1 − BmQm + CmQm−1)Âi;m,n

= βi;i−1Qi−1 +
n+1∑
m=i

βi;mQm = βi;i−1Qi−1 +
n+1∑
m=i

ηi;mP̂i;m (3.57)

40 See, e.g., [12] theorem 3.2.1 or [14] 10.3 (7) and (8). An and Bn are such that Qn+1 − (Anx + Bn)Qn

is of degree at most n − 1, thus, it reads
∑n−1

j=0 αjQj where, from the orthogonality relation (A.2), for

j = 0, . . . , n − 1, αj hj = −(Q̂j , AnxQn) = −An(xQj ,Qn). Since Qj is of degree j + 1, the last inner
product vanishes except for j = n − 1. The coefficient of xn in xQn−1 being kn−1, this fixes αn−1 = −Cn as given
in equation (3.55).
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where βi;i−1, βi;m and ηi;m for m = i, . . . , n + 1 can be easily written in terms of
Âi;j,k, B̂i;j,k, Aj , Bj and Cj for i � j � k � n + 1. In the subspace Pi , the expansion
of Qi−1 in terms of P̂i;j , j = 0, . . . , i − 1 depends on the inner product ( , )1.41 In the generic
case, all the coefficients αi;j = −ηi;j , j = i, . . . , n − 1 are nonzero, while for the standard
polynomials, only the equivalent coefficient for j = n − 1 does not vanish. Thus, there is
no generalization of the standard three term linear recurrence formula involving a constant
number of terms.

However, five term linear recurrence formulae are derived in a forthcoming paper II for
special cases associated with Hermite and Laguerre polynomials. These relations, as also some
differentiation formulae, are based on differential equations satisfied by the weight functions
w and w2 we consider.

3.3.6. Linear recurrence formula with respect to both i and n. Equations (3.7), (3.16) and
(3.17) allow us to relate polynomials P̂i;n corresponding to different values of i. With
0 � i � j � n, inverting the finite sums over m and 	, one has

P̂j ;n =
n∑

m=j

(
m∑

	=i

P̂i;	B̂i;	,m

)
Âj ;m,n =

n∑
	=i

P̂i;	Ĉi,j ;	,n Ĉi,j ;	,n :=
n∑

m=sup(j,	)

B̂i;	,mÂj ;m,n

(3.58)

where Ĉi,i;	,n = δ	,n. Furthermore, since P̂i;n and P̂j ;n are monic polynomials, Ĉi,j ;n,n = 1.
Setting j = i + 1, and provided one is able to compute the coefficients Ĉi,i+1;	,n, the linear
recurrence formula (3.58) allows us to determine step by step P̂i;n for 0 � i � n, starting with
P̂0;n given by equation (3.18). This is done explicitly in a forthcoming paper II for special
cases associated with the Hermite and Laguerre polynomials.

3.3.7. Properties of the zeros. Several properties of the zeros of standard orthogonal
polynomials have been known for a long time: e.g., all the zeros are real, simple and located
in the support D := [a, b] of the measure and also, the zeros of polynomials with consecutive
degrees separate each other42. We saw previously that the SBO polynomial Pi;n coincides
with standard orthogonal polynomials in several special cases, i.e. from equations (3.13)
and (3.18),

P̂n;n = Q̂n P̂0;n = Q̂2;n n = 0, 1, . . . (3.59)

and furthermore, if the domains D and D2, and the measures dµ and dµ2 are symmetric with
respect to the origin, from equations (3.51) and (3.50),

P̂n−1;n = Q̂n P̂1;2n−1 = Q̂2;2n−1 n = 1, 2, . . . . (3.60)

Now, what about the zeros of Pi;n in the remaining generic case 0 < i < n? Starting
the proof as for the standard orthogonal polynomials (see footnote 42), one has from
equation (3.6),

(Pi;n, Pi;0)0 = (Pi;n, Pi;0) ∝
∫
D

dµ(x)Pi;n(x) = 0. (3.61)

Hence, the measure being positive, there exists at least one value of x in D := [a, b] where
Pi;n changes sign. If Pi;n changed its sign in D at m < i points x1, . . . , xm, the polynomial
Rm := ∏m

j=1(x − xj ) of degree m would be such that

(Pi;n, Rm)0 = (Pi;n, Rm) =
∫
D

dµ(x)Pi;n(x)Rm(x) = 0. (3.62)

41 If ( , )1 = ( , ), then P̂i;j = Q̂j , j = 0, . . . , i − 1 and αi;j vanishes for j = 0, . . . , i − 2.
42 See, e.g., [12] theorems 3.3.1 and 3.3.2.
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This contradicts the fact that Pi;n(x)Rm(x) would have a constant sign throughout D.
Therefore: for 0 � i � n, Pi;n has at least m � i distinct real zeros of odd order in D.
Also, m � n, since Pi;n is of exact degree n. Since the coefficients of the polynomials
considered are real, if x is a zero, so is its conjugate complex. Therefore, it follows that
Pn−1;n, n = 1, 2, . . . has n real and simple zeros in D, generalizing thereby the property
following from equation (3.60) only for symmetric measures. On the other hand, the usual
argument above cannot be applied when i � m � n since, although (Pi;n, Rm)0 = 0, this
inner product is no longer defined by a single integral.

Concerning the relative positions of the zeros of SBO polynomials with a given i and
consecutive degrees, we have not been able to prove a general property. Let us only recall that
the proof of the interleaving of the zeros for standard orthogonal polynomials is a consequence
of the Christoffel–Darboux formula43, which itself follows from the three term recurrence
formula. It has already been emphasized in section 3.3.5 that such a recurrence formula no
longer holds for SBO polynomials.

4. Conclusion

In order to take into account the particle-number conservation within the density functional
theory, B Giraud et al [1–3] considered a new sets of real ‘constrained polynomials’.
These polynomials satisfy a constraint of vanishing average with a positive measure and are
orthogonal with respect to a inner product defined by a second positive measure. The linear
constraint considered can be viewed as an orthogonality relation with a constant polynomial,
with respect to another inner product defined by the first measure. This allows us to recast
the determination of these polynomials into a more general problem of finding particular
orthogonal bases in an Euclidean vector space endowed with distinct Euclidean inner products.

Recalling basic properties of linear algebra, it is shown that, given an Euclidean vector
space E with the inner product ( , ), and any i-dimensional subspace Ei , there exists a unique
complementary and orthogonal subspace E⊥

i of codimension i. Endowing each of these
subspaces with different Euclidean inner products ( , )1 and ( , )2, respectively, yields to define
Ei and E⊥

i as BO subspaces. This induces a new Euclidean inner product ( , )0 on E , which
coincides with ( , )1 on Ei and with ( , )2 on E⊥

i , and vanishes otherwise. An orthogonal
basis with respect to ( , )0 is called a BO basis, providing a general frame to study particular
constrained polynomials. We give a general strategy to determine such a basis using a two step
G-SO procedure. Let {e0, . . . , ei−1} be any basis of Ei . A first step determines E⊥

i by G-SO of
any basis {e0, . . . , ei−1, ei, . . .} of E , with respect to the inner product ( , ). This provides an
orthogonal basis {E0, E1, . . .} of E such that {Ei,Ei+1, . . .} is a basis of E⊥

i . In a second step,
a G-SO of {Ei,Ei+1, . . .} with respect to the inner product ( , )2 provides an orthogonal basis
{φi, φi+1, . . .} of E⊥

i . Such a basis depends on Ei and on the two inner products ( , ) and ( , )2.
(The standard problem of getting an orthogonal basis {φ0, . . . , φi−1} of Ei with respect to ( , )1

brings nothing new.) All the relevant quantities in the G-SO (e.g., connection coefficients
between bases) are expressed in terms of determinants with metric tensor components as
entries, except possibly for the last row. Furthermore, the G-SO is a step-by-step procedure
well suited for numerical calculation. The importance of the non-degenerate and/or the definite
character of the inner products considered is underlined. Since different inner products are
considered simultaneously, the Dirac notation must be handled with care, in particular to
express the orthogonal projectors onto Ei and E⊥

i . All these considerations can be extended to
Hermitian vector spaces and to Hilbert spaces.

43 See, e.g., [12] theorem 3.2.2 or [14] 10.3 (10) and (11).
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These general results apply readily to the special case of vector spaces of real polynomials
with Euclidean inner products defined with positive measures. The generalization of the
problem of constrained polynomials is as follows. Let ( , ) be an Euclidean inner product and
{e0, . . . , ei−1} be any i linearly independent polynomials defining the i-dimensional subspace
Ei . The polynomials P, satisfying the i constraints (ej , P ) = 0, j = 0, . . . , i − 1, belong to
the unique subspace E⊥

i of codimension i which is complementary and orthogonal to Ei with
respect to ( , ). An orthogonal basis of E⊥

i with respect to a distinct Euclidean inner product
( , )2 defines a BO basis. Now, the structure of polynomial algebra with the multiplication law
xjxk = xj+k , and the definition of the inner products in terms of integrals provide additional
properties.

We make a systematic study of these properties in the special case where Ei is the subspace
Pi of real polynomials of degree less than i. Then, the first step to define P⊥

i coincides with
the determination of the standard orthogonal polynomials Q0,Q1, . . . with respect to the
inner product ( , ),Qn being of exact degree n. Requiring that the BO basis polynomials
Pi;n := φn, n = i, i + 1, . . . of P⊥

i , be of exact degree n, defines them uniquely apart from
a constant multiplicative factor for each polynomial. We call them the SBO polynomials.
Emphasizing the similarities to and the differences from the standard orthogonal polynomials
(basically due to the fact that inner product ( , )0 is no longer defined by a single integral), we
investigate the projection operators, the integral representations, the special case of symmetric
measures with respect to the origin, the normalizations, the recurrence formulae with respect
to the degree n and with respect to both i and n and finally the zeros. For physical applications,
it is useful to consider the special case where the inner product ( , ) is defined by the classical
measure corresponding to a classical orthogonal polynomial set. This will be done in a
forthcoming paper II for Hermite and Laguerre polynomials.

Applying the general formulae, a similar calculation can be done with a choice of the
subspace of polynomials Ei different from Pi , Then, the BO polynomials are not what we
call the standard ones, and a priori, a new similar study starting from the general formulae
(2.4)–(2.10) is required. Note that if the measures considered are symmetric with respect to
the origin (see section 3.3.3), and if Ei is a subspace of polynomials with a given parity, then,
due to trivial parity arguments, the monic BO polynomials of the opposite parity coincide
with the monic standard BO polynomials Q̂2;n of the same degree. For example, for a given
m � 0, let E1 be spanned by {x2m+1} associated with i = 1 constraint of zero odd (2m + 1)th
moment. Then, the even monic BO polynomials read P̂2n = Q̂2;2n, n = 0, 1, . . . . The odd
BO polynomials require a new determination, except for m = 0, where, the even and odd
polynomials being decoupled and x being the lowest degree odd polynomial, the problem
reduces to the same study as for the odd SBO polynomials in the case i = 2. Thus, one has
P̂2n+1 = P̂2;2n+1, n = 1, 2, . . . . Such a case has already been considered in [1]44.

More generally, instead of constraints all associated with the same inner product ( , ),
one may think to use a similar approach to take into accounts constraints associated with
different inner products. As a first example of generalization, does there exist vectors v (e.g.
polynomials) such that (e1, v)1 = 0 and (e2, v)2 = 0 (i.e. for two given distinct vectors e1 and
e2, and two given distinct inner products ( , )1 and ( , )2)? We show in section 2.3.1 that this

44 The ‘Hermite polynomials constrained by a zero momentum’, considered in [1] section 3 (17), with the weight

functions w := e− 1
2 x2

and w2 := e−x2
, is not the case i = 2. Indeed, the one-dimensional subspace E1 considered

there, and spanned by {x1}, is not P2 spanned by {x0, x1}. Nevertheless, it follows from above that the monic BO
polynomials are: P̂2n = Q̂2;2n, n = 0, 1, . . . and P̂2n+1 = P̂2;2n+1, n = 1, 2, . . . . However, this simplification would
no longer hold for measures not symmetric with respect to the origin and/or, e.g., Hermite polynomials constrained
by zero first and second moments, i.e. now with E2 spanned by {x1, x2}). Then, the BO polynomials would not be
the standard ones.
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generalization of BO subspaces to more than two subspaces may have no solution, a unique
solution or an infinite number of solutions according to the inner products involved between
pairs of subspaces. As a second example of generalization, does there exist vectors v such that
(e1, v) = 0 and (e1, v)′ = 0 (i.e. for one given vector e1, and two given distinct inner products
( , ) and ( , )′)? We argue in section 2.3.2 that, for this example, v belong to a subspace of
dimension 1 or 0 according to the inner products considered. One of the referees brought our
attention to a similar study on multiple orthogonal polynomials or Hermite–Pade polynomials
[21], e.g., with 0 � m � n, polynomials Pm,n of degree n orthogonal with respect to a weight
function w1 to xj , j = 0, . . . , m and orthogonal with respect to another weight function w2

to xj , j = 0, . . . , n − m − 2. Assuming that the weight functions are classical, i.e. solution
of Pearson’s differential equation (φw)′ + ψw = 0, with polynomial coefficients φ and ψ ,
these polynomials have many new applications and nontrivial generalization of the theory of
standard orthogonal polynomials.
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Appendix A. Standard orthogonal polynomials

As considered in section 3.1, let PN be the vector space over the real field of real polynomials
of degree less than N with the Euclidean inner product ( , ) defined with the measure {D, dµ}.
With respect to the monomial basis {x0, . . . , xN−1}, the matrix of metric tensor components
is a persymmetric matrix known as the moment or Hankel matrix45, which entries are the
moments of the measure defined by equation (3.1)46,

gj,k = (xj , xk) =
∫
D

dµ(x)xj+k = cj+k j, k = 0, . . . , N − 1. (A.1)

A.1. Relations between standard orthogonal polynomials and monomials

For 0 � n � N − 1 and given arbitrary nonzero finite kj := b−1
j,j , j = 0, . . . , n, according

to equations (2.4)–(2.10), the G-SO of {x0, . . . , xn} defines uniquely the standard orthogonal
polynomials Qj, j = 0, . . . , n, such that Qj is of degree j with kj as coefficient of xj ,

(Qj ,Qk) = hjδj,k j, k = 0, . . . , n (A.2)

Qn =
n∑

m=0

xmam,n := knQ̂n Q̂n := xn + r̂nx
n−1 + ŝnx

n−2 + O(xn−3) (A.3)

45 See, e.g., [18] section 7.4. This basic property follows from the polynomial algebra; see footnote 29.
46 As noted in [22] corollary 6.3.2, one can consider as well gj,k := (εj , x

k), where εj is any polynomial of exact
degree j , in order to make easier the forthcoming calculations.
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xn =
n∑

m=0

Qmbm,n bn,n = a−1
n,n = k−1

n (A.4)

where Q̂n denotes the monic polynomial47. One has for 0 � m � n � N − 1,

Zn = det[cj+k]j,k=0,...,n Z−1 := 1 (A.5)

Q̂n = 1

Zn−1
det

[
(cj+k)

(xk)

]
j=0,...,n−1
k=0,...,n

Q̂0 = 1 (A.6)

hn := k2
nĥn ĥn = Zn

Zn−1
(A.7)

am,n := knâm,n âm,n = 1

Zn−1
det

[
(cj+k)

(δm,k)

]
j=0,...,n−1
k=0,...,n

(A.8)

r̂n = ân−1,n ŝn = ân−2,n Q̂n(0) = â0,n (A.9)

bm,n := k−1
m b̂m,n b̂m,n = 1

Zm

det

[
(cj+k)

(cn+k)

]
j=0,...,m−1
k=0,...,m

. (A.10)

Apart from the usual choice of normalization for the classical orthogonal polynomials48,
three particular normalizations are commonly used:

(i) kn = 1, then Qn = Q̂n is a monic polynomial;
(ii) hn = 1, then the polynomials Qn, n = 0, 1, . . . are orthonormal. In addition, choosing

kn > 0, from equation (A.7), one has49

kn =
(

Zn−1

Zn

)1/2,

Qn = (Zn−1Zn)
−1/2 det

[
(cj+k)

(xk)

]
j=0,...,n−1
k=0,...,n

Q0 = Z
−1/2
0 ;

(A.11)

(iii) kn = Zn−1, then Z-factors in denominators remain only in equation (A.10), in particular,

hn = Zn−1Zn Qn = det

[
(cj+k)

(xk)

]
j=0,...,n−1
k=0,...,n

Q0 = 1. (A.12)

A.2. Domain and measure are symmetric with respect to the origin

If, for example, D = [a, b] with a = −b and dµ(x) = w(x)dx with an even weight function
w(−x) = w(x), the polynomials Qn, n = 0, 1, . . . are even or odd according as n is even or
odd. Indeed, Qn(−x) satisfies the same orthogonality relations (A.2) as Qn(x), and since there
are unique polynomials satisfying these orthogonality relations with the normalization (A.3),
comparing the coefficient of xn yields Qn(−x) = (−1)nQn(x). Actually, the even and odd
polynomials separate from each other: cj+k vanishes for j + k odd and the determinants which

47 The coefficient r̂n is denoted as rn in [14], see section 10.3, p 158, where the coefficient k′
n := knrn of xn−1 in Qn

is also introduced.
48 See, e.g., [14] 10.13 (4), 10.12 (2), 10.9 (8) (for λ 	= 0) and 10.8 (5) for the choice of kn for Hermite, Laguerre,
Gegenbauer and Jacobi polynomials, respectively.
49 See, e.g., [12] (2.2.6), (2.2.7) and (2.2.15) where Dn denotes Zn.
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occur in the general formulae (A.5)–(A.10) have a checkerboard structure, except possibly for
the last row. These determinants can be evaluated with the following lemma:

Lemma A. Let A := (Aj,k)j,k=0,...,n−1 be an n × n matrix with the checkerboard structure
Aj,k = 0 if j + k odd, except possibly for the last row j = n − 1. Then, one has

det A = det B det C (A.13)

where, for m = 1, 2, . . . ,

n := 2m B := (Bj,k := A2j,2k)j,k=0,...,m−1 C := (Cj,k := A2j+1,2k+1)j,k=0,...,m−1 (A.14)

n := 2m + 1 B := (Bj,k := A2j,2k)j,k=0,...,m C := (Cj,k := A2j+1,2k+1)j,k=0,...,m−1. (A.15)

The relation above is still true for n = 1, setting det C := 1 as a null determinant.

For n even, the proof is as follows. Permuting rows and columns of A in order to collect
the zero elements into two blocks, one gets

det A = det

B (0)j,k=0,...,m−1

(0) j=0,...,m−2
k=0,...,m−1

(A2j+1,2k+1) j=0,...,m−2
k=0,...,m−1

(An−1,2k)k=0,...,m−1 (An−1,2k+1)k=0,...,m−1

 . (A.16)

The Laplace expansion (see footnote 37) of this determinant according to its first m rows yields
equation (A.14) (the result does not depend on An−1,2k, k = 0, . . . , m − 1). For n odd, the
proof is similar (then, the result does not depend on An−1,2k+1, k = 0, . . . , m − 1).

Now, this lemma yields for n = 0, 1, . . . ,

Z(e)
n := det[c2j+2k]j,k=0,...,n Z

(e)
−1 := 1 (A.17)

Q̂2n =
n∑

m=0

â2m,2nx
2m = 1

Z
(e)
n−1

det

[
(c2j+2k)

(x2k)

]
j=0,...,n−1
k=0,...,n

Q̂0 = 1 (A.18)

x2n =
n∑

m=0

Q̂2mb̂2m,2n (A.19)

ĥ2n = Z(e)
n

Z
(e)
n−1

(A.20)

â2m,2n = 1

Z
(e)
n−1

det

[
(c2j+2k)

(δm,k)

]
j=0,...,n−1
k=0,...,n

(A.21)

b̂2m,2n = 1

Z
(e)
m

det

[
(c2j+2k)

(c2n+2k)

]
j=0,...,m−1
k=0,...,m

(A.22)

Z(o)
n := det[c2j+2k+2]j,k=0,...,n Z

(o)
−1 := 1 (A.23)

Q̂2n+1 =
n∑

m=0

â2m+1,2n+1x
2m+1 = 1

Z
(o)
n−1

det

[
(c2j+2k+2)

(x2k+1)

]
j=0,...,n−1
k=0,...,n

(A.24)

x2n+1 =
n∑

m=0

Q̂2m+1̂b2m+1,2n+1 (A.25)
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ĥ2n+1 = Z(o)
n

Z
(o)
n−1

(A.26)

â2m+1,2n+1 = 1

Z
(o)
n−1

det

[
(c2j+2k+2)

(δm,k)

]
j=0,...,n−1
k=0,...,n

(A.27)

b̂2m+1,2n+1 = 1

Z
(o)
m

det

[
(c2j+2k+2)

(c2n+2k+2)

]
j=0,...,m−1
k=0,...,m

. (A.28)

These polynomials being unique, the above relations can also be proven by checking directly,
as for equation (2.6), that the polynomials (A.18) and (A.24) do satisfy the orthogonality
condition (A.2) with the normalization (A.3).

Appendix B. Examples of block orthogonal polynomials for three subspaces

Let us only illustrate section 2.3 with the following polynomial examples for equation (2.29),
N1 = N2 = 1, N = 3, E1 = P1, E1,2 = P2 and E = P3, with distinct inner products ( , )ρ,σ

defined by the positive measures {Dρ,σ , wρ,σ (x) dx} for 1 � ρ < σ � 3. Then, each of the
three one-dimensional vector spaces E1, E2 and E3 is defined, respectively, by the monic basis
polynomials,

P̂0 = 1 P̂1 = x + a0,1, P̂2 = x2 + a1,2x + a0,2 (B.1)

where a0,1, a1,2 and a0,2 have to be determined from the orthogonality conditions,

(P̂0, P̂1)1,2 = 0 (P̂0, P̂2)1,3 = 0 (P̂1, P̂2)2,3 = 0. (B.2)

The first equation above defines uniquely E2 in all cases. The last two equations may have for
E3 a unique solution, no solution or an infinite number of solutions depending linearly on one
parameter.

(i) If, for 1 � ρ < σ � 3,Dρ,σ is symmetric with respect to the origin and wρ,σ is even,
then one gets from parity arguments,

a0,1 = a1,2 = 0 a0,2 = −c1,3;2
c1,3;0

(B.3)

where cρ,σ ;n := ∫
Dρ,σ

dx wρ,σ (x)xn. Thus, in that case, E3 exists and it is unique.
(ii) If,

Dρ,σ := [0,∞) wρ,σ (x) := e−xxzρ,σ −1 zρ,σ > 0 (B.4)

one finds using the Euler integral50, cρ,σ ;n = �(zρ,σ + n), a0,1 = −z1,2 and(
1 z1,3

z2,3 + a0,1 z2,3(z2,3 + 1 + a0,1)

)(
a0,2

a1,2

)
= −

(
z1,3(z1,3 + 1)

z2,3(z2,3 + 1)(z2,3 + 2 + a0,1)

)
. (B.5)

In the generic case, e.g., z1,2 = 1, z2,3 = 2 and z1,3 = 3, the determinant of the 2 × 2
matrix above is nonzero and there is a unique solution for E3. For, e.g., z1,2 = 1, z2,3 = 2
and z1,3 = 4, the determinant vanishes while the rank of the augmented matrix is 2. Then,
there is no solution. For the two linear equations (B.3) be the same, one must have{

(z2,3 + a0,1)(z2,3 − z1,3) + z2,3 = 0
(z2,3 + a0,1)(z2,3 − z1,3) + 2z2,3 − z1,3 + 1 = 0

⇒
{
z2,3 − z1,3 + 1 = 0
a0,1 = 0.

(B.6)

This case is excluded since z1,2 = −a0,1 has to be positive.

50 See, e.g., [15] 6.1.1.
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(iii) In the same case as above, except for the inner product ( , )1,2 assumed to be defined now
by any domain D1,2 symmetric with respect to the origin and any even weight function
w1,2, a0,1 vanishes by parity and equations (B.3) and (B.4) still hold. Therefore, for
z2,3 − z1,3 + 1 = 0 with z1,3 and z2,3 positive, there is an infinite number of subspaces
E3 defined by the basis polynomial P̂2 = x2 − z1,3 (z1,3 + 1) + a1,2(x − z1,3) depending
linearly on one arbitrary parameter a1,2.
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